Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
2.
Cell Stem Cell ; 30(4): 396-414.e9, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37028405

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.


Assuntos
Edição de Genes , Miócitos Cardíacos , Humanos , Animais , Suínos , Miócitos Cardíacos/metabolismo , Linhagem Celular , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Arritmias Cardíacas/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Diferenciação Celular/genética
3.
Stem Cell Reports ; 16(10): 2473-2487, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506727

RESUMO

Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA). Although transient, the risk posed by EA presents a barrier to clinical translation. We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related mortality as well as suppress tachycardia and arrhythmia burden. This study uses a porcine model to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA. None of the nine treated subjects experienced the primary endpoint of cardiac death, unstable EA, or heart failure compared with five out of eight (62.5%) in the control cohort (hazard ratio = 0.00; 95% confidence interval: 0-0.297; p = 0.002). Pharmacologic treatment of EA may be a viable strategy to improve safety and allow further clinical development of cardiac remuscularization therapy.


Assuntos
Amiodarona/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Ivabradina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/efeitos adversos , Taquicardia/tratamento farmacológico , Animais , Antiarrítmicos/uso terapêutico , Linhagem Celular , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Modelos Animais de Doenças , Combinação de Medicamentos , Humanos , Masculino , Células-Tronco Pluripotentes/transplante , Suínos
4.
Stem Cell Reports ; 10(1): 87-100, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29249665

RESUMO

The identification of cell surface proteins on stem cells or stem cell derivatives is a key strategy for the functional characterization, isolation, and understanding of stem cell population dynamics. Here, using an integrated mass spectrometry- and microarray-based approach, we analyzed the surface proteome and transcriptome of cardiac progenitor cells (CPCs) generated from the stage-specific differentiation of mouse and human pluripotent stem cells. Through bioinformatics analysis, we have identified and characterized FZD4 as a marker for lateral plate mesoderm. Additionally, we utilized FZD4, in conjunction with FLK1 and PDGFRA, to further purify CPCs and increase cardiomyocyte (CM) enrichment in both mouse and human systems. Moreover, we have shown that NORRIN presented to FZD4 further increases CM output via proliferation through the canonical WNT pathway. Taken together, these findings demonstrate a role for FZD4 in mammalian cardiac development.


Assuntos
Antígenos de Diferenciação/metabolismo , Proteínas do Olho/metabolismo , Receptores Frizzled/metabolismo , Mesoderma/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Humanos , Mesoderma/citologia , Camundongos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
5.
Stem Cells Transl Med ; 5(2): 164-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683871

RESUMO

Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium, functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts, we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system, these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs, we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust, scalable, and consistent methodology. In the present study, we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set, we identified activin-like kinase 5 (transforming growth factor-ß type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality, with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic screens are discussed, demonstrating the value of this biologically relevant and reproducible technology. In addition, this assay system was able to identify novel and potent inducers of differentiation and proliferation of induced pluripotent stem cell-derived cardiac progenitor cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Biomarcadores/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Expressão Gênica , Ensaios de Triagem em Larga Escala , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fenótipo , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-kit/deficiência , Proteínas Proto-Oncogênicas c-kit/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
PLoS One ; 9(9): e108051, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25255322

RESUMO

Cardiac hypertrophy is an independent risk factor for cardiovascular disease and heart failure. There is increasing evidence that microRNAs (miRNAs) play an important role in the regulation of messenger RNA (mRNA) and the pathogenesis of various cardiovascular diseases. However, the ability to comprehensively study cardiac hypertrophy on a gene regulatory level is impacted by the limited availability of human cardiomyocytes. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer the opportunity for disease modeling. Here we utilize a previously established in vitro model of cardiac hypertrophy to interrogate the regulatory mechanism associated with the cardiac disease process. We perform miRNA sequencing and mRNA expression analysis on endothelin 1 (ET-1) stimulated hiPSC-CMs to describe associated RNA expression profiles. MicroRNA sequencing revealed over 250 known and 34 predicted novel miRNAs to be differentially expressed between ET-1 stimulated and unstimulated control hiPSC-CMs. Messenger RNA expression analysis identified 731 probe sets with significant differential expression. Computational target prediction on significant differentially expressed miRNAs and mRNAs identified nearly 2000 target pairs. A principal component analysis approach comparing the in vitro data with human myocardial biopsies detected overlapping expression changes between the in vitro samples and myocardial biopsies with Left Ventricular Hypertrophy. These results provide further insights into the complex RNA regulatory mechanism associated with cardiac hypertrophy.


Assuntos
Cardiomegalia/patologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
7.
Nat Biotechnol ; 32(10): 1026-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25240927

RESUMO

The epicardium supports cardiomyocyte proliferation early in development and provides fibroblasts and vascular smooth muscle cells to the developing heart. The epicardium has been shown to play an important role during tissue remodeling after cardiac injury, making access to this cell lineage necessary for the study of regenerative medicine. Here we describe the generation of epicardial lineage cells from human pluripotent stem cells by stage-specific activation of the BMP and WNT signaling pathways. These cells display morphological characteristics and express markers of the epicardial lineage, including the transcription factors WT1 and TBX18 and the retinoic acid-producing enzyme ALDH1A2. When induced to undergo epithelial-to-mesenchymal transition, the cells give rise to populations that display characteristics of the fibroblast and vascular smooth muscle lineages. These findings identify BMP and WNT as key regulators of the epicardial lineage in vitro and provide a model for investigating epicardial function in human development and disease.


Assuntos
Linhagem da Célula/fisiologia , Pericárdio/citologia , Células-Tronco Pluripotentes/citologia , Aldeído Desidrogenase/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Camundongos , Miócitos Cardíacos/citologia , Via de Sinalização Wnt/fisiologia
8.
J Biomol Screen ; 18(10): 1203-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24071917

RESUMO

A major hurdle for cardiovascular disease researchers has been the lack of robust and physiologically relevant cell-based assays for drug discovery. Derivation of cardiomyocytes from human-induced pluripotent stem (iPS) cells at high purity, quality, and quantity enables the development of relevant models of human cardiac disease with source material that meets the demands of high-throughput screening (HTS). Here we demonstrate the utility of iPS cell-derived cardiomyocytes as an in vitro model of cardiac hypertrophy. Exposure of cardiomyocytes to endothelin 1 (ET-1) leads to reactivation of fetal genes, increased cell size, and robust expression of B-type natriuretic peptide (BNP). Using this system, we developed a suite of assays focused on BNP detection, most notably a high-content imaging-based assay designed for phenotypic screening. Miniaturization of this assay to a 384-well format enabled the profiling of a small set of tool compounds known to modulate the hypertrophic response. The assays described here provide consistent and reliable results and have the potential to increase our understanding of the many mechanisms underlying this complex cardiac condition. Moreover, the HTS-compatible workflow allows for the incorporation of human biology into early phases of drug discovery and development.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Biomarcadores/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Cardiomegalia/tratamento farmacológico , Diferenciação Celular , Tamanho Celular , Células Cultivadas , Expressão Gênica , Ensaios de Triagem em Larga Escala , Inibidores de Histona Desacetilases/farmacologia , Humanos , Imidazóis/farmacologia , Concentração Inibidora 50 , Miócitos Cardíacos/metabolismo , Fenótipo , Quinolinas/farmacologia , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo , Verapamil/farmacologia
9.
Cell ; 151(1): 206-20, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22981692

RESUMO

Heart development is exquisitely sensitive to the precise temporal regulation of thousands of genes that govern developmental decisions during differentiation. However, we currently lack a detailed understanding of how chromatin and gene expression patterns are coordinated during developmental transitions in the cardiac lineage. Here, we interrogated the transcriptome and several histone modifications across the genome during defined stages of cardiac differentiation. We find distinct chromatin patterns that are coordinated with stage-specific expression of functionally related genes, including many human disease-associated genes. Moreover, we discover a novel preactivation chromatin pattern at the promoters of genes associated with heart development and cardiac function. We further identify stage-specific distal enhancer elements and find enriched DNA binding motifs within these regions that predict sets of transcription factors that orchestrate cardiac differentiation. Together, these findings form a basis for understanding developmentally regulated chromatin transitions during lineage commitment and the molecular etiology of congenital heart disease.


Assuntos
Epigênese Genética , Redes Reguladoras de Genes , Miocárdio/citologia , Animais , Diferenciação Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Coração/embriologia , Humanos , Camundongos , Fatores de Transcrição/metabolismo , Transcriptoma
10.
Circ Res ; 110(2): 253-64, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22116818

RESUMO

RATIONALE: c-myb null (knockout) embryonic stem cells (ESC) can differentiate into cardiomyocytes but not contractile smooth muscle cells (SMC) in embryoid bodies (EB). OBJECTIVE: To define the role of c-Myb in SMC differentiation from ESC. METHODS AND RESULTS: In wild-type (WT) EB, high c-Myb levels on days 0-2 of differentiation undergo ubiquitin-mediated proteosomal degradation on days 2.5-3, resurging on days 4-6, without changing c-myb mRNA levels. Activin-A and bone morphogenetic protein 4-induced cardiovascular progenitors were isolated by FACS for expression of vascular endothelial growth factor receptor (VEGFR)2 and platelet-derived growth factor receptor (PDGFR)α. By day 3.75, hematopoesis-capable VEGFR2+ cells were fewer, whereas cardiomyocyte-directed VEGFR2+/PDGFRα+ cells did not differ in abundance in knockout versus WT EB. Importantly, highest and lowest levels of c-Myb were observed in VEGFR2+ and VEGFR2+/PDGFRα+ cells, respectively. Proteosome inhibitor MG132 and lentiviruses enabling inducible expression or knockdown of c-myb were used to regulate c-Myb in WT and knockout EB. These experiments showed that c-Myb promotes expression of VEGFR2 over PDGFRα, with chromatin immunopreciptation and promoter-reporter assays defining specific c-Myb-responsive binding sites in the VEGFR2 promoter. Next, FACS-sorted VEGFR2+ cells expressed highest and lowest levels of SMC- and fibroblast-specific markers, respectively, at days 7-14 after retinoic acid (RA) as compared with VEGFR2+/PDGFRα+ cells. By contrast, VEGFR2+/PDGFRα+ cells cultured without RA beat spontaneously, like cardiomyocytes between days 7 and 14, and expressed cardiac troponin. Notably, RA was required to more fully differentiate SMC from VEGFR2+ cells and completely blocked differentiation of cardiomyocytes from VEGFR2+/PDGFRα+ cells. CONCLUSIONS: c-Myb is tightly regulated by proteosomal degradation during cardiovascular-directed differentiation of ESC, expanding early-stage VEGFR2+ progenitors capable of RA-responsive SMC formation.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Ativinas/metabolismo , Animais , Sítios de Ligação , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Separação Celular/métodos , Imunoprecipitação da Cromatina , Inibidores de Cisteína Proteinase/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células HEK293 , Humanos , Células K562 , Leupeptinas/farmacologia , Camundongos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Mutação , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Proteínas Proto-Oncogênicas c-myb/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Tempo , Transfecção , Tretinoína/farmacologia , Troponina/metabolismo , Ubiquitinação , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Cell Stem Cell ; 8(2): 228-40, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21295278

RESUMO

Efficient differentiation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to a variety of lineages requires step-wise approaches replicating the key commitment stages found during embryonic development. Here we show that expression of PdgfR-α segregates mouse ESC-derived Flk-1 mesoderm into Flk-1(+)PdgfR-α(+) cardiac and Flk-1(+)PdgfR-α(-) hematopoietic subpopulations. By monitoring Flk-1 and PdgfR-α expression, we found that specification of cardiac mesoderm and cardiomyocytes is determined by remarkably small changes in levels of Activin/Nodal and BMP signaling. Translation to human ESCs and iPSCs revealed that the emergence of cardiac mesoderm could also be monitored by coexpression of KDR and PDGFR-α and that this process was similarly dependent on optimal levels of Activin/Nodal and BMP signaling. Importantly, we found that individual mouse and human pluripotent stem cell lines require optimization of these signaling pathways for efficient cardiac differentiation, illustrating a principle that may well apply in other contexts.


Assuntos
Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/fisiologia , Citometria de Fluxo , Humanos , Camundongos , Células-Tronco Pluripotentes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Cardiovasc Transl Res ; 4(1): 66-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21061105

RESUMO

Moving from the bench to the bedside is an expensive and arduous journey with a high risk of failure. One roadblock on the path of translational medicine is the paucity of predictive in vitro models available during preclinical drug development. The ability of human embryonic stem (ES) and induced pluripotent stem (iPS) cells to generate virtually any tissue of the body, in vitro, makes these cells an obvious choice for use in drug discovery and translational medicine. Technological advancements in the production of stem cells and their differentiation into relevant cell types, such as cardiomyocytes, has permitted the utility of these cells in the translational medicine setting. In particular, the derivation and differentiation of patient-specific iPS cells will facilitate an understanding of basic disease etiology, enable better drug efficacy and safety screens, and ultimately lead to personalized patient therapies. This review will focus on recent advancements in the derivation and differentiation of human ES and iPS cells into cardiomyocytes and their uses in safety testing and modeling human disease.


Assuntos
Doenças Cardiovasculares/cirurgia , Células-Tronco Embrionárias/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Miócitos Cardíacos/transplante , Transplante de Células-Tronco , Pesquisa Translacional Biomédica , Animais , Doenças Cardiovasculares/patologia , Diferenciação Celular , Proliferação de Células , Humanos , Transplante de Células-Tronco/efeitos adversos , Resultado do Tratamento
13.
Proc Natl Acad Sci U S A ; 107(8): 3329-34, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19846783

RESUMO

Myocardial infarction resulting in irreversible loss of cardiomyocytes (CMs) remains a leading cause of heart failure. Although cell transplantation has modestly improved cardiac function, major challenges including increasing cell survival, engraftment, and functional integration with host tissue, remain. Embryonic stem cells (ESCs), which can be differentiated into cardiac progenitors (CPs) and CMs, represent a candidate cell source for cardiac cell therapy. However, it is not known what specific cell type or condition is the most appropriate for transplantation. This problem is exasperated by the lack of efficient and predictive strategies to screen the large numbers of parameters that may impact cell transplantation. We used a cardiac tissue model, engineered heart tissue (EHT), and quantitative molecular and electrophysiological analyses, to test transplantation conditions and specific cell populations for their potential to functionally integrate with the host tissue. In this study, we validated our analytical platform using contractile mouse neonatal CMs (nCMs) and noncontractile cardiac fibroblasts (cFBs), and screened for the integration potential of ESC-derived CMs and CPs (ESC-CMs and -CPs). Consistent with previous in vivo studies, cFB injection interfered with electrical signal propagation, whereas injected nCMs improved tissue function. Purified bioreactor-generated ESC-CMs exhibited a diminished capacity for electrophysiological integration; a result correlated with lower (compared with nCMs) connexin 43 expression. ESC-CPs, however, appeared able to appropriately mature and integrate into EHT, enhancing the amplitude of tissue contraction. Our results support the use of EHT as a model system to accelerate development of cardiac cell therapy strategies.


Assuntos
Insuficiência Cardíaca/cirurgia , Mioblastos Cardíacos/fisiologia , Contração Miocárdica , Células-Tronco Pluripotentes/citologia , Engenharia Tecidual/métodos , Animais , Reatores Biológicos , Diferenciação Celular , Conexina 43/biossíntese , Fenômenos Eletrofisiológicos , Fibroblastos/fisiologia , Insuficiência Cardíaca/etiologia , Camundongos , Camundongos Transgênicos , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/transplante , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley
14.
JACC Cardiovasc Imaging ; 2(9): 1114-22, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19761992

RESUMO

OBJECTIVES: The aim of the current study is to test the ability to label and detect murine embryonic stem cell-derived cardiovascular progenitor cells (ES-CPC) with cardiac magnetic resonance (CMR) using the novel contrast agent Gadofluorine M-Cy3 (GdFM-Cy3). BACKGROUND: Cell therapy shows great promise for the treatment of cardiovascular disease. An important limitation to previous clinical studies is the inability to accurately identify transplanted cells. GdFM-Cy3 is a lipophilic paramagnetic contrast agent that contains a perfluorinated side chain and an amphiphilic character that allows for micelle formation in an aqueous solution. Previous studies reported that it is easily taken up and stored within the cytosol of mesenchymal stem cells, thereby allowing for paramagnetic cell labeling. Investigators in our laboratory have recently developed techniques for the robust generation of ES-CPC. We reasoned that GdFM-Cy3 would be a promising agent for the in vivo detection of these cells after cardiac cell transplantation. METHODS: ES-CPC were labeled with GdFM-Cy3 by incubation. In vitro studies were performed to assess the impact of GdFM-Cy3 on cell function and survival. A total of 500,000 GdFM-Cy3-labeled ES-CPC or control ES-CPC were injected into the myocardium of mice with and without myocardial infarction. Mice were imaged (9.4-T) before and over a 2-week time interval after stem cell transplantation. Mice were then euthanized, and their hearts were sectioned for fluorescence microscopy. RESULTS: In vitro studies demonstrated that GdFM-Cy3 was easily transfectable, nontoxic, stayed within cells after labeling, and could be visualized using CMR and fluorescence microscopy. In vivo studies confirmed the efficacy of the agent for the detection of cells transplanted into the hearts of mice after myocardial infarction. A correspondence between CMR and histology was observed. CONCLUSIONS: The results of the current study suggest that it is possible to identify and potentially track GdFM-Cy3-labeled ES-CPC in murine infarct models via CMR.


Assuntos
Carbocianinas/metabolismo , Meios de Contraste/metabolismo , Células-Tronco Embrionárias/transplante , Corantes Fluorescentes/metabolismo , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Miócitos Cardíacos/transplante , Compostos Organometálicos/metabolismo , Coloração e Rotulagem/métodos , Animais , Carbocianinas/toxicidade , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Meios de Contraste/toxicidade , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Feminino , Corantes Fluorescentes/toxicidade , Fluorocarbonos , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Compostos Organometálicos/toxicidade , Fatores de Tempo
15.
Proc Natl Acad Sci U S A ; 106(18): 7571-6, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19372372

RESUMO

A variety of viruses establish latency by integrating their genome into the host genome. The integration event generally occurs in a nonspecific manner, precluding the prediction of functional consequences from resulting disruptions of affected host genes. The nonpathogenic adeno-associated virus (AAV) is unique in its ability to stably integrate in a site-specific manner into the human MBS85 gene. To gain a better understanding of the integration mechanism and the consequences of MBS85 disruption, we analyzed the molecular structure of AAV integrants in various latently infected human cell lines. Our study led to the observation that AAV integration causes an extensive but partial duplication of the target gene. Intriguingly, the molecular organization of the integrant leaves the possibility that a functional copy of the disrupted target gene could potentially be preserved despite the resulting rearrangements. A latently infected, Mbs85-targeted mouse ES cell line was generated to study the functional consequences of the observed duplication-based integration mechanism. AAV-modified ES cell lines continued to self-renew, maintained their multilineage differentiation potential and contributed successfully to mouse development when injected into blastocysts. Thus, our study reveals a viral strategy for targeted genome addition with the apparent absence of functional consequences.


Assuntos
Dependovirus/genética , Marcação de Genes/métodos , Provírus/genética , Integração Viral , Latência Viral , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Humanos , Camundongos , Proteína Fosfatase 1/genética
16.
Nature ; 453(7194): 524-8, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18432194

RESUMO

The functional heart is comprised of distinct mesoderm-derived lineages including cardiomyocytes, endothelial cells and vascular smooth muscle cells. Studies in the mouse embryo and the mouse embryonic stem cell differentiation model have provided evidence indicating that these three lineages develop from a common Flk-1(+) (kinase insert domain protein receptor, also known as Kdr) cardiovascular progenitor that represents one of the earliest stages in mesoderm specification to the cardiovascular lineages. To determine whether a comparable progenitor is present during human cardiogenesis, we analysed the development of the cardiovascular lineages in human embryonic stem cell differentiation cultures. Here we show that after induction with combinations of activin A, bone morphogenetic protein 4 (BMP4), basic fibroblast growth factor (bFGF, also known as FGF2), vascular endothelial growth factor (VEGF, also known as VEGFA) and dickkopf homolog 1 (DKK1) in serum-free media, human embryonic-stem-cell-derived embryoid bodies generate a KDR(low)/C-KIT(CD117)(neg) population that displays cardiac, endothelial and vascular smooth muscle potential in vitro and, after transplantation, in vivo. When plated in monolayer cultures, these KDR(low)/C-KIT(neg) cells differentiate to generate populations consisting of greater than 50% contracting cardiomyocytes. Populations derived from the KDR(low)/C-KIT(neg) fraction give rise to colonies that contain all three lineages when plated in methylcellulose cultures. Results from limiting dilution studies and cell-mixing experiments support the interpretation that these colonies are clones, indicating that they develop from a cardiovascular colony-forming cell. Together, these findings identify a human cardiovascular progenitor that defines one of the earliest stages of human cardiac development.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ativinas/farmacologia , Proteína Morfogenética Óssea 4 , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/transplante , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-kit/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Trends Cardiovasc Med ; 17(7): 240-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17936206

RESUMO

The fully formed heart is composed of diverse cell lineages including myocytes, endothelial cells, vascular smooth muscle cells, and fibroblasts that derive from distinct subsets of mesoderm during embryonic development. Findings from lineage tracing studies indicate that cardiomyocytes develop from cells that express fetal liver kinase-1, suggesting that the cardiac lineages may arise from a progenitor cell with vascular cardiomyocyte potential. Recent studies using the embryonic stem cell model have led to the identification of a fetal liver kinase-1(+) progenitor cell that displays both vascular and cardiomyocyte potential. A comparable progenitor was also isolated from the early mouse embryo. Identification and isolation of these cardiovascular progenitor cells establishes a new model of heart development that will provide insights into the mechanisms regulating cardiovascular lineage diversification. These progenitor cells may also represent a novel cell population for models of congenital heart disease and cell replacement therapy.


Assuntos
Sistema Cardiovascular/citologia , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Coração/crescimento & desenvolvimento , Miocárdio/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Sistema Cardiovascular/crescimento & desenvolvimento , Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Humanos , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
18.
Dev Cell ; 11(5): 723-32, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17084363

RESUMO

Cell-tracing studies in the mouse indicate that the cardiac lineage arises from a population that expresses the vascular endothelial growth factor receptor 2 (VEGFR2, Flk-1), suggesting that it may develop from a progenitor with vascular potential. Using the embryonic stem (ES) cell differentiation model, we have identified a cardiovascular progenitor based on the temporal expression of the primitive streak (PS) marker brachyury and Flk-1. Comparable progenitors could also be isolated from head-fold stage embryos. When cultured with cytokines known to function during cardiogenesis, individual cardiovascular progenitors generated colonies that displayed cardiomyocyte, endothelial, and vascular smooth muscle (VSM) potential. Isolation and characterization of this previously unidentified population suggests that the mammalian cardiovascular system develops from multipotential progenitors.


Assuntos
Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Células-Tronco Multipotentes/citologia , Músculo Liso Vascular/citologia , Miócitos Cardíacos/citologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Sistema Cardiovascular/citologia , Sistema Cardiovascular/embriologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Proteínas Fetais/metabolismo , Camundongos , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/biossíntese
19.
Exp Hematol ; 33(9): 955-64, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16140142

RESUMO

Embryonic stem (ES) cells have the potential to develop into all cell types of the adult body. This capability provides the basis for considering the ES cell system as a novel and unlimited source of cells for replacement therapies for the treatment of a wide range of diseases. Before the cell-based therapy potential of ES cells can be realized, a better understanding of the pathways regulating lineage-specific differentiation is required. Current studies suggest that the bone morphogenic protein, transforming growth factor-beta, Wnt, and fibroblast growth factor pathways that are required for gastrulation and germ layer induction in the embryo are also essential for differentiation of ES cells in culture. The current understanding of how these factors influence germ layer induction in both the embryo and in the ES cell differentiation system is addressed in this review.


Assuntos
Desenvolvimento Embrionário , Indução Embrionária , Camadas Germinativas/citologia , Células-Tronco/fisiologia , Animais , Camadas Germinativas/fisiologia , Substâncias de Crescimento/fisiologia , Camundongos , Transdução de Sinais , Células-Tronco/citologia
20.
Eur J Immunol ; 35(7): 2051-60, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15915541

RESUMO

Thymocyte positive and negative selection are dependent on avidity-driven TCR-mediated recognition events in the thymus. High-avidity recognition events result in negative selection, while low-avidity recognition events result in positive selection. However, it has not been established how thymocytes maturation stages affect their responses to TCR signals of different avidities. We gained insight into this question when we reduced thymocyte selection to an in vitro system, in which full maturation of developmentally synchronized immature double-positive thymocytes was induced on a cloned line of thymic epithelial cells. Our analysis of the kinetics of thymocyte development supports a multi-phasic model of thymic selection. In it, thymocyte maturation stages as well as interaction avidity control the outcome TCR stimulation. Positive selection is initiated during a primary recognition event that proceeds independently of the TCR avidity. During a secondary recognition event the final fate of thymocyte, full maturation versus negative selection, is determined by TCR avidity.


Assuntos
Diferenciação Celular/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Desoxiguanosina/metabolismo , Epitélio/imunologia , Epitélio/metabolismo , Imunidade Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Timo/citologia , Timo/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...